2D-3D Real-time Rigid Registration to Compensate for Liver Motion During Interventional Therapy

Derek Gillies
University of Windsor, Department of Physics

MOTIVATION

- In men, hepatocellular carcinoma (HCC) is the 2nd leading cause of cancer related deaths worldwide, mostly in developing countries.\(^3\)
- Minimally invasive percutaneous techniques, such as radio-frequency and microwave ablation, are a rapidly expanding research field to treat 70\% of patients who are not candidates for surgical resection or liver transplant.\(^2\)
- These techniques have higher local recurrence rates than surgical resection, often caused by insufficient or inaccurate local ablation of cancerous cells.
- Deformation and motion of the liver from breathing and cardiac cycles are the most significant sources of error.\(^3\)
- 3D transrectal ultrasound (TRUS)-guided systems have recently been used to compensate for prostate motion near real-time (~1 s) to an accuracy < 2 mm with an automated intensity based method.\(^4\)

OBJECTIVES

- Similar to the developed prostate motion compensation algorithm,\(^6\) the normalized cross correlation (NCC) using Powell’s method will be evaluated for liver 2D-3D registration.
- Future HCC tumors will be segmented preoperatively and registered real-time to increase accuracy of therapeutic applicators currently not available.

METHODS

3D US Abdominal Scanning System

- A commercial Ultrasonix Sonixtouch system with a C5-2 curvilinear transducer was used.
- A stabilizing arm was manufactured to support the custom built transducer holder. The holder was moved by 3 motors, allowing full range of motion needed for ultrasound acquisition.
- Acquisition software was developed to control and reconstruct linear, tilt, and hybrid US volumes with fully automated real-time motion compensation capabilities.
- Written consent from 7 healthy volunteer subjects was obtained to test the system.

METHODS

2D-3D Registration Workflow and Analysis

- 3D hybrid and tilt US volumes and 2D live stream images were acquired during subject breath hold, similar to a percutaneous treatment.
- The volume was transformed and resampled to compute the target registration error (TRE) from the Euclidean distance between corresponding fiducials \(f\) in the volume and \(N\) 2D images:

\[
TRE = \sqrt{\frac{\sum_{i=1}^{N}(f_{vol} - f_{2D})^2}{N}}
\]

- To account for user variability, the fiducial localization error (FLE) was measured in 5 acceptable 3D and 2D images over 5 days with 15 identified fiducials \(n\):

\[
(FLE)^2 = \sigma_x^2 + \sigma_y^2 + \sigma_z^2
\]

- For each fiducial \(i\) the variance \(\sigma^2\) of the X, Y, and Z coordinates over the 5 days was calculated to find the mean FLE:

\[
FLE = \frac{\sum_{i=1}^{N}(FLE)^2}{N}
\]

RESULTS

Hybrid Scan TRE

- 10 2D images were used per corresponding volume to calculate TRE values. Errors < 5 mm were considered clinically acceptable.

Subcostal Scans

Intercostal Scans

Tilt Scan TRE

FLE and TRE Component Error Analysis

- 3D volume FLE = 0.5 ± 0.2 mm
- 2D image FLE = 0.28 ± 0.05 mm
- Euclidean distance components between 3D and 2D fiducials after transformation were used to create a 95\% confidence error ellipsoid

REFERENCES

ACKNOWLEDGEMENTS

- Thanks to Dr. Aaron Fenster, my supervisor, for the opportunity to work in his research lab. Special thanks to Dr. David Tessier and Lori Gardi for their help and support. Participation of all volunteers was also much appreciated.