Site Search


Graduate opportunity:

I have an opening for a graduate student who is interested in working on projects described below.  My research projects require techniques from many areas: coherent control, quantum optics, atomic molecular and optical (AMO) physics, nanoplasmonics, nanophotonics, health research...  Thus, the students I seek will have

  • a strong background (= coursework & A grades) in quantum mechanics and electromagnetic theory
  • a minimum GPA of A- (80% and above)
  • some prior research experience & familiarity with a programming language

Interested?  Email me with a paragraph on why you want to work in my group.  See this article for tips on what to write (and what not to write).  I look forward to hearing from you.  (FYI: I will not reply to mass emails or emails that begin with "Dear Sir")

Control of nanoscale light-matter interactions: Theory and Computation

My group studies the interaction between light and matter at the nanoscale (atoms, molecules, nanostructures), the control of this interaction, and investigates its possible applications.   We develop theoretical and computational methods for modeling quantum and classical dynamics in atoms, ions and nanostructures.

Quantum control:

The focus of this research is to discover and design  electromagnetic fields that will control atoms, molecules and nanostructures to perform quantum operations. Our research goal is to create new schemes of quantum control with electromagnetic fields (cw or pulses) both in atomic systems (such as trapped ions and Rydberg atoms), and in many-body systems (such as metal nanostructures). ($$: NSERC, CFI, ORF)

Quantum control is very important for developing theories in chemical dynamics, quantum information science and quantum state engineering. We developed the first method for the optimal control of an algorithm that has been used for quantum computing in multi-level systems.  Recently, mathematicians Tony Bloch, Roger Brockett and I have provided explicit dense subspace controllability results for an infinite-dimensional quantum system (trapped-ion). This work expands the scope of quantum control research to beyond that of finite-dimensional quantum systems. We are currently interested in quantum control in the presence of decoherence and/or metal nanostructures ($$: NSERC)

Nanoplasmonics and biosensors:

Nanoplasmonics is an exciting area of fundamental research, which also has the promise of leading to important applications. Plasmonic nanodevices are expected to significantly advance many areas of research such as diffraction-limited nano-optics, sensing, clinical diagnostics, nanoelectronics, to mention a few. In my research program, we are focusing on developing bio-chemo sensors, in order to develop improved nanodevices for clinical diagnostics. ($$: NSERC, CFI, ORF, Ontario Association of Medical Laboratories, CIPI, Ontario Centres of Excellence)

Optimization & Health research (completed project):

Optimization methods developed for controlling light-matter interactions can be applied to solve large optimization problems in medical research. In collaboration with Jeff Richer at the Windsor Regional Cancer Center, we are trying to find optimal radiation treatment planning protocols using the learning algorithm. ($$: Windsor Regional Cancer Centre, MITACS)